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Abstract. We propose here a new approach to study co-evolution and
we apply it to the well-known iterated prisoner’s dilemma. The original-
ity of our work is that it uses a simplified version of the game, and thus,
restrict the search space of evolutionary dynamics. This allows to have
a look at the totality of the search space in permanence, and so, a com-
plete understanding of the phenomenon of co-evolution in process. The
paper includes a little game-theoretic introduction to iterated prisoner’s
dilemma, a survey of previous works on evolution in this game and the
exposition of the questions that were still asked to us. We describe then
our special approach to the problem, using populations larger than the
search space, or even infinite. The experimental results that we present
complete the actual knowledge of iterated prisoner’s dilemma.

1 Introduction

In a symmetric two-players game, each one secretly chooses a decision among
the N available. The N x N-matrix v = [v;;] that defines the game, gives the
utility earned by each player consequently to these decisions : v;; is the result of
the player who chooses decision i while its opponent chooses decision j.

In the Prisoner’s Dilemma (PD), there are two possible decisions (i.e. Npp =
2), number 1 being interpreted by “Defect” (D) and number 2 by “Cooper-
ate” (C). The utility matrix is given by the following table :

player 2 D c
player 1
D P/P T/S
C SIT R/R

(result of player 1 / result of player 2)
le.:

pp_ [PT
= (85



where T'> R > P > S. We see that for a very wide variety of parameters, PD
is a non-zero-sum game : a reward for a player does not enforce a cost for its
“opponent”.

Player 1 may lead the following reasoning :

— “If player 2 cooperates, then it is preferable to defect, because the Temp-
tation of defection T' is greater than the Reward for mutual cooperation
R.”

— “If player 2 defects, then it is again better to defect, because the Penalty for
mutual defection P is greater than the Sucker’s punishment S.”

This may be represented by drawing two arrows on the table in the following
way :

player 2 D c
player 1
D P/P T/S
C SIT R/R

The same reasoning step can be applied to player 2, what leads to the drawing
of two symmetric arrows :

player 2 D c
player 1
D Np/p<=—-T1/s
C S/IT <=RI/R

So, if both player follow the rational reasoning developed above, they both con-
clude that defection is the best alternative whatever the opponent’s choice. It
results in the situation (D, D), convergence point of the arrows. This fact is
formalised by saying that (D, D) is a Nash equilibrium of the game:

Definition1. (7,7) is a Nash equilibrium of game v iff. :
Vij 2 Viij Vi/ 75 i, and Vji 2 Vjig V_]/ ;é _]

That is why this situation is marked with a N on the table.

So the defection is the natural choice of two rational, but not speculator
at all, agents. However this choice seems somehow non-optimal because both
players could obtain a greater gain by cooperating (R > P). We will say that
(C, C) strictly dominates (D, D) :



Definition 2. (i, j) strictly dominates (¢, j/) in the game v iff. :
Vi > Vi1, and Viji > Vi

All the dilemma lies in the fact that the Nash equilibrium of the game is strictly
dominated by a diametrically opposed situation 2 . For this reason, PD is called
a strong cooperation problem.

In PD, the players are supposed to meet only once ¢ . In the Iterated Pris-
oner’s Dilemma (IPD), the two same players are supposed to meet and play PD
several times successively. They are allowed to have their decision at the n'”
meeting depend on all the past interactions with the same opponent, i.e. the
results of the n — 1 previous meetings. The aim of each one is to maximise the
summation over all iterations of his rewards ®.

The constraint 7'+ S < 2R is imposed on the utility values. Its role is to
guarantee that two players that always cooperate will do better than two players
that have agreed to play (C, D) and (D, C) alternatively.

Theoretically, IPD is a two-player symmetric game exactly as PD was, we
note ulPD its utility matrix. In IPD, a decision is the choice of a strategy, i.e. of
a mapping from the set of all possible sequences of results — the “past histories”
— into the set D, C. As we show below, there is a huge combinatorial explosion
of the decision space of IPD.

We call “length of the interactions” or “number of iterations” L, the number
of times that two same players play PD together. The number of different possible
histories 2 (L) may be iterativelly calculated with the following formulas :

z(1)=1, and 2(L)=4L"Y4e(L-1) VL>1.

The first one comes from the fact that, if L = 1, then IPD equals PD and
there is only one possible history, noted # : “nothing has been played, the game
begins”. After the first iteration, the game is already finished.

The second formula uses the fact that the result of each iteration takes its
value in the set T, R, P, S. There exists so 4X~1 different possible histories of
exactly L — 1 iterations. The second term of r.h.s. comes from the fact that a
situation where less than L — 1 iterations have been played is a possible history
in a game of length L.

From the definition of a strategy as a mapping from a set of size z(L) into a
2-elements set, it results that the number of decisions of IPD is : Nipp = 9e(L)

? in the sense that every player must change his decision to go from the dominated

situation to the dominating one.

"

this is equivalent to suppose that the players randomly change of opponent at each
turn and never know who they are playing with (anonymous game), or that the
players forget all their past experiences between two iterations, or also that they are
myopic and cannot anticipate farther than one time-step.

sometimes, it is the discounted cumulated reward (cf. Axelrod 1984) that is to max-
imise. In regard to the experimental aspect of our work, the non-discounted reward
is easier to handle. Moreover, the robustness of our results seems to indicate that
the use of discounted rewards would not affect a lot the behaviour of the model.



So it increases exponentially relatively to the exponential of L. For instance, if
L = 4, two players play only four times together but Nipp ~ 4 102°. This number
is not computable and so, even with this very short length of interactions, the
combinatorial explosion of the search space is getting too much for us.

With the repetition of non-anonymous interactions, a lot of high-level con-
cepts as benevolence, malevolence, susceptibility and indulgence are introduced
into the game. In a lot of fields as varied as sociology, psychology, international
politic and biology, IPD has proven to be a very useful and powerful model (cf.
Axelrod 1984 ; Baefsky and Berger 1974 ; Bethlehem 1975 ; Riker and Brams
1973 ; Schelling 1981). Lately works on IPD are almost all devoted to the emer-
gence of cooperation in an evolving population of players. Since his leading works
and the publication of his book “The Evolution of Cooperation” (1984), R. Axel-
rod’s name is almost always associated with this field of study . In the following
section, we give a survey of his results and the most relevant of associated works.

2 Previous Works

The first topic presented in R. Axelrod ’s book “The Evolution of Cooperation” is
the result of computer tournaments opposing several strategies for IPD proposed
by researchers from different spheres. As it is well known, the winner of these
tournaments was the strategy “Tit for Tat” (TFT), that may be defined in the
following way : cooperate at the first iteration and after, always do whatever
your opponent did on the previous iteration. The author attributes this success
to following special properties of TFT :

benevolence : never to be the first to defect,
susceptibility : to punish a defection of the opponent by another defection,
indulgence : to forgive the opponent after having punished him.

The next step of Axelrod studies is the simulation of what should have hap-
pened if he had continued to organise tournaments. Assuming that :

— no new strategy should have been invented and introduced into the tourna-
ments,

— the representation of a strategy in a tournament (i.e. the percentage of people
using it) is proportional to its average score at the previous tournament®,

he leads computer simulations of tournaments. These experiments show that
TFT would have continued to dominate the tournaments, in percentage of rep-
resentation and in score, as long as the two hypothesis above are still respected.

After having verified the superiority of TFT in the artificial environment
constituted by the set of strategies proposed by scientists, Axelrod leads a theo-
retical study of “evolutionary stability” to explain this result. For this purpose,
he defines the notion of collective stability in the following way :

5 in a way very similar to Genetic Algorithms’selection operator.



Definition 3. The decision i for game v is collectively stable iff. :
vii > vy Vi

So, a strategy ¢ is collectively stable if (¢, ¢) is a Nash equilibrium (according to
definition 1) of the game. Then we say that ¢ is in Nash equilibrium with itself.

The reasoning laid by Axelrod is the following : if the population is uniquely
constituted by a single “indigenous” strategy i, then, to be able to survive,
an invading strategy j must do a score strictly greater than the natives. As
the invader and most of the indigenous play only against native i, because of
their great numerical superiority, j will survive if v;; > v;;. Thus strategy ¢ is
evolutionary stable if this inequality never holds.

Using this definition, he shows that TFT is collectively stable in IPD. Then
he states that collective stability is evolutionary stability and so, TFT is evolu-
tionary stable. This work is closely related to J. Maynard-Smith’s studies (1975),
although Axelrod’s collective stability is less restrictive than Maynard-Smith’s
evolutionary stability.

A doubt is cast on the utility of these results results by Boyd and Loberbaum
(1987). The critic is that it is sufficient that the invading strategy j realises
vj; > vi; to be able to survive in an homogenous population of i. As the authors
notice, this distinction is important in IPD because a lot of couple (i, j) verify
vIPD = pIPD 1t is to be noted that, after having argued that the collective
stability of TFT is not sufficient to explain the emergence of cooperation, the
authors propose another definition of evolutionary stability, more restrictive than
Axelrod ’s collective stability. Then they show that no deterministic strategy may
be evolutionary stable in IPD according to their definition.

It seems to us that this criticism is very well founded. It is particularly
pertinent in the case of evolutionary algorithms as Genetic Algorithms (GA)
and Evolution Strategies (ES). See (Back and Schwefel 1993 ; Hoffmeister and
Back 1991) for an overview of evolutionary algorithms, (Holland 1975 ; Goldberg
1989 ; Back and Hoffmeister 1991 ; Back 1992) for GA, and (Rechenberg 1973 ;
Schwefel 1977 ; Schwefel 1981 ; Herdy 1991) for ES.

Imagine an evolutionary algorithm (GA or ES) when, at some time, the
population is uniquely constituted with TFT. In appearance, it expresses by a
population of agent that always cooperate. Evolutionary algorithms working in
a somehow blind mode, random mutations may always happen. For instance, an
individual playing the strategy “Always Cooperate” (ALLC) may appear. Exter-
nally, this modification is not seenable since everybody continues to cooperate.
So, the ALLC mutant realises the same score as TFT indigenous, and for this
reason, he has the same probability to survive selection. Thus, it is theoretically
possible that little by little the TFT population becomes invaded by ALLC,
creating so a favourable ground for the later appearance of “Always Defect”
(ALLD) individuals. We do not know what will then happen, it seems that the
population must tend to an equilibrium point, or enter a cyclic dynamic. In all
cases, it is highly improbable that the population still be composed only of TFT



after a few iterations of the algorithm. So TFT is not stable under the action of
GA and ES 7.

A definition of stability consistent with evolutionary algorithms is the fol-
lowing :

Definition4. The decision i for game v is EA-stable iff. :
Vii > Vji Vj ;é 1

So, a strategy is EA-stable if it is in strict Nash equilibrium with itself, according
to the definition :

Definition5. (i,j) is a strict Nash equilibrium of game v iff. :
vij >viy Yi'#4, and v > Vi £

It is be noted that our EA-stability is more restrictive than Boyd and Lober-
baum’s evolutionary stability (but this rough definition is enough to illustrate
our purpose). So, we can deduce of their results that no deterministic strategy
1s EA-stable in IPD.

Although Axelrod’s theoretical results may be put in the balance, he also
proposes experimental results to support the thesis that cooperation based on
benevolence, susceptibility and indulgence is a natural phenomenon. In (Axelrod
1987), he presents results of simulations where a population of 20 strategies for
IPD is submitted to the action of a GA. Each one satisfies :

Hypothesis M3. The choice of every decision only depends on the three last
results with the same opponent (3 steps of memory),

and is encoded on a linear chromosome of length 70. This experiment concludes
with the emergence of cooperation, due to the dominance of TFT and TFT-like
individuals.

A lot of other studies have been laid to experiment the evolution of a popu-
lation of IPD-strategies under the action of evolutionary algorithms. The main
differences between them is the way to encode strategies, what directly deter-
mines the nature of the search space (Fogel 1993 ; Gacogne 1994 ; Lindgren and
Nordal 1994 ; Mithlenbein 1992). Most often, the authors succeed in having co-
operation emerge. It seems to us that, because of its simplicity, Axelrod’s result
is still the most convincing. However, we think that the search space used in this
study is too large beside of the population size to allow a deep understanding of
the mechanisms in process.

7 all this reasoning may be summarised in the following way : Axelrod’s collective
stability is consistent with a model of evolution where there is a cost imposed on
mutation. This is not the case of GA and ES, where the calculus of the fitness of an
individual does not take into account the fact that it is a mutant or an indigenous.



3 Our Approach

As we have seen in section 2, the decision space of IPD is totally out of the range
of actual computers. We are concerned with the following of its consequences : a
simulated population of strategy for IPD may only cover an insignificant part of
the complete search space.This is a issue very important to keep in mind when
we approach IPD and evolution.

Even if they restrict their study to a sub-set of the complete strategy space,
previous works on evolution and IPD always use search spaces too large for being
totally explored. For instance, Axelrod’s sub-set of strategies satisfying hypoth-
esis M3 is of size 27° ~ 10?!, and he uses a population of only 20 individuals.
Moreover, the size of the search space seems to be one of the main limitations
to the efficiency of evolutionary algorithms. The following appealing remark is
made about the validity of D. E. Goldberg’s Schema Theorem by Back and
Schwefel (1993) :

“ ..finite populations often do not contain all instances of a specific
schema. Observed schema fitnesses thus might quite mislead the search
process.”

In order to be able to lead reliable simulations with population sizes not too low
beside of the search space, we have chosen to limit ourselves to the set of the 32
strategies that satisfy :

Hypothesis M;. the choice of every play only depends on the result of the last
iteration played with the same opponent (1 step of memory).

It appears to us that this is the easiest way to arbitrarily restrict the search space
to a very low sub-set of the set of all strategies, while preserving the symmetry
of the original space. Moreover, most of the atypical strategies as TFT, ALLC
and ALLD satisfy M;. An arbitrary numbering for the strategies satisfying M;
is proposed in table 1. It will be used all over the end of this paper.

When we limit ourselves to the strategies satisfying M, IPD becomes a 32-
decisions game. Its 32 x 32 utility-matrix '’ may then be easily calculated by
simulating, on any computer, all the possible confrontations of two strategies,
for a fixed length of interaction L. We can then verify that, as it is announced
in section 2, there is no strategy that is EA-stable, whatever the value of L.

However, there may exist mixed situations (i.e. situations where different
strategies cohabit) that constitute equilibrium points of the system. The analyt-
ical determination of them is possible by a solving 32-unknowns system, after
having defined the dynamic of the system (cf. section 4). However we prefer to
lead an experimental determination of them. Our idea is to try different evolution
schemes on a population of strategies satisfying M.

Our work could seem to be “another” IPD-based simulation of evolution.
However, the originality of our work lies in the fact that we can use population
sizes greater than the search space, and then lead simulations where the observed



behaviour of the algorithm is not too far from its expected behaviour. In the
limit, we represent the population by a set {q1,q2,...q32} € [0;1]3? such that :

32
Z g =1
i=1

(i.e. belonging to the simplex Sss of R32) where ¢; represents the percentage of
individual using strategy ¢ in the population.

With this continuous approach to the population, we associate a determin-
istic handling of chance : all calculus are made by using the expected values of
variables with respect to calculated probabilities, instead of by simulating ran-
dom drawings, as it is the case in classical GA and ES. So, as a consequence
of the weak law of large numbers, the continuous approach to the population
simulates the theoretical behaviour of the model with an infinite population. It
allows a very interesting look at the evolution of the population that would not
have been possible in greater search spaces.

To present our model, we develop in section 4 a discussion about the ques-
tion : “what is an evolutionary dynamic 7.

4 Artificial Evolution

The actual model of natural evolution is the following :

1. each individual metabolism is determined by its genetic code, the DNA, that
is proper to him and present in all of its cells.

2. DNA is the support of heredity, it is transmitted from parents to children,
on the condition of some random recombinations and mutations.

3. An individual metabolism determines its external characters, the environ-
ment selects the individuals possessing the characters the most favourable
for survival and reproduction. This phenomenon of natural selection modifies
the statistical distribution of genetic codes from generations to generations.

Evolutionary algorithms are based on the idea that there exist an intrinsic “op-
timising principle” in this scheme, and they try to reproduce it in purpose of
optimisation. But, because they only modelise a part of the whole process, the
mechanism processed is quite different.

GA basic principle is to replace the problem of optimising a numerical func-
tion f of some discrete set X, by the problem optimising a numerical function
g of a certain set C' of “codes” of X elements. The Building Block Hypothesis
(Holland 1975 ; Goldberg 1989) states that we wait from the code to satisfy
some special properties with respect to the objective function. In particular,
this is needed that individuals obtained by recombination (at the code level)
of good individuals, are also good individuals. Somehow, things may abstracted
the following way : by defining notions of neighbourhood and distances, the re-
combination operator induces a topology on the code space C'; the function g is



then supposed to have some properties close to continuity with respect to this
topology.

The Strong Causality Principle , one of the two fundamental principles of ES
(Hoffmeister and Back 1991 ; Herdy 1991), explicitly stipulates that a small vari-
ation of the phenotype induces a small variation of the objective (fitness) func-
tion. So, ESs directly use a property of continuity of the objective function.The
need of a certain continuity of the fitness function in evolutionary mechanisms
also appears in (Feistel and Ebeling 1989), that greatly inspired us for building
our model. As these authors do, we modelise the evolutionary process with two
operators :

mutation : a mechanism of random transformation of an individual into one of
his neighbours, with respect to a certain topology. With infinite population
a diffusion operator is used.

selection : a mechanism that determines the individuals able to survive to the
change of generation, deterministically or stochastically, and in a way that
favours the performance.

We tried several alternatives for the choice of the mutation topology and the
selection operator. With these choices, we wanted to build a system not to far
from GA and ES. However we do not argue that our scheme is an exact repro-
duction of all these algorithms. This particularly true in the case of GA, because
of the absence of explicit recombination in our model.

Even if it does not always constitute a good model of evolutionary algorithms,
we argue that our system is a not so bad model of evolution. In all cases it is
very close to Feistel and Ebeling’s one. Moreover, the surprising robustness of
our observations (cf. section 5), allows to conjecture that the behaviour of the
system would not have change if we had used an explicit recombinative operator.

There also exist an other point where our model is closer to Feistel and
Ebeling’s one than to evolutionary algorithms. In GA and ES, the fitness of an
individual is constant and deterministically determined by the objective function
f- In our model, the fitness f; of strategy ¢ depends on all the population, and so,
it varies through time. Defining ¢; as the percentage of individual using strategy
1 in the population, then we use :

32

IPD

fi= E Vi -
j=1

The underlying hypothesis is explained in the next paragraph. We want to quote
now that the use of a formula of type f; = f(q1,492,...qn) to replace in Feistel
and Ebelling’s model and in ours, the less general formula f; = a constant =
f(z;) of evolutionary algorithms, could be used to differentiate evolutionary
computation as a particular field of a more general artificial evolution domain.
The artificial evolution approach allows to really modelise evolving interactions,
and so, is much closer to the process of natural selection than evolutionary
computation models. Previous works on IPD and evolution like (Axelrod 1987
; Fogel 1993 ; Lindgren and Nordal 1994) are artificial evolution models in the



sense defined here. This also the case of artificial ecology models as (Werner and
Dyer 1991).
By choosing

32

IPD

fiZE qi Vi; -
=1

we implicitly made the hypothesis of no spatial distribution of the population.
With a finite population, it formulates as :

Hypothesis NS. At each generation, every individual meets every other one
once, its fitness is its average score over these meetings (no spatialization).

With infinite population, it formulates as :

Hypothesis NS’. At each generation, every individual meets a big number of
its colleagues and its opponents are randomly drawn according to the probabil-
ities (¢;).

5 Experimental Protocol

We give below an exhaustive list of all the parameters of the model. Readers
desiring more information are invited to contact us.

IPD parameters : i.e. the utilities P, 7', S and R, and the length of inter-
actions L. They are used when the simulation begins, to calculate v''P by
simulating all possible confrontations.

Population size S : that may be infinite, as explained in section 3. It is in-
teresting to see how large must the population be, to have the observed
evolution of the system correspond with the expected evolution. We may so
verify the accuracy of the quote from Béack and Schwefel (1993) in section 3

Topology of mutation : we tried two alternatives :

— trivial topology : each strategy is the neighbour of every strategy ;

— structured topology : a neighbour of a given strategy i is obtained by
flipping one decision in the rule representation as used in table 1. Thus
every strategy has exactly 5 neighbours.

Selection operator : proportional or elitist :

— proportional selection is a GA selection operator. The probability of
selection of strategy i is equal to :

g fi
32 d
Zj:l 45 f;

where f; is the fitness of strategy ¢ and ¢; is the percentage of individuals
using strategy 7 in the population.

— elitist selection is the selection operator used in A 4+ p-ES (Back and
Schwefel 1993 ; Hoffmeister and Biack 1991). Mutation creates new in-
dividuals and increases the population size. The selection brings it back
to its initial value by suppressing the worst individuals first.



Temperature 6 : the parameter that determines the magnitude of genetic mix-
ing at each generation. With proportional selection, it is a probability of
mutation, and with the elitist selection, it is to the ratio p/A.

Initial population : uniformly distributed or composed of a single strategy
that may be chosen among the 32 possible ones.

With some special sets of value attached to different parameters, our system
correspond to existing evolutionary algorithms :

— with elitist selection and trivial topology, our system is a A + p-ES with no
recombination and where A = S and = S6.

— with proportional selection and structured topology, it is a GA with no
crossover and a special mutation operator that works at the scale of individ-
uals. The probability for an individual to mute is p,,, = 0.

The real-time needed to run a simulation is very short. The limit behaviour
of the system (equilibrium or cycle) is always obtained in less than one minute
on a good PC. So, we could try a very large variety of parameters and totally
explore the model. As a consequence, an exhaustive description of the totality
of our observations is impossible in a small paper like this one. That is why we
have chosen to present our results in a descriptive and non-rigorous form. Some
representative graphics are added to illustrate our purpose, they are gathered at
the end of the paper.

6 Experimental results

This section is divided into two parts. The first describes the behaviour of the
model with infinite population. Of course, this behaviour may be obtained with
finite but large populations. We develop this point in the second part, that con-
stitutes a description of the influence of all the parameters listed in the previous
section.

To describe our observations with infinite population, we also put apart the
case where elitist reproduction and structured topology are used together. As a
matter of fact, excepted for this special case, the population always converges to
an equilibrium. Moreover, we verify that the composition of the initial population
has no influence on the state of the system at equilibrium. That seems to indicate
that this is the only stable equilibrium of the model.

So, with proportional selection or/and trivial topology, there exists a unique
equilibrium of the model dynamics. The “quality” of the equilibrium is well
measured by the average score of individuals over the population when it is
reached. Figure 1 represents the evolution of this data as a function of the
temperature §, with proportional and elitist selection, and trivial topology of
mutation. This is to be noted that, although, they have been drawn with some
special values for the parameters, the two curves have a high level of generality
and similar results are obtained with other sets of parameters.

In fig.1 we verify that the average score at equilibrium tends to 100% of coop-
eration when 0 tends to zero (no mutation at all). With proportional selection,



this value is reached in zero, but nowhere else. In the case of elitist selection,
there is a discontinuity in zero, where the score at equilibrium is the one of
a uniformly distributed population. This is due to the fact that the A + p-ES
model implemented with elitist selection, does not affect the population in any
way when g = 6.5 = 0. Thus the population at equilibrium is the same as the
initial population, i.e. uniformly distributed.

We also see in fig.1 that the equilibrium quality rapidly decreases when the
temperature raises. In the case of proportional selection, we tend to a random
game when the temperature tends to 1. This is not surprising since the GA model
behaves almost as a random algorithm when p,, = 1. With elitist selection, there
is a fall from 100% of cooperation to 100% of defection around g = 2 A. This is
a typical instance of the brutal behaviour of the ES model due to its extremist
way to carry on selection with the max operator.

We are now interested in the composition of the population at equilibrium.
Figure 2 gives two very representative examples with low temperature and so,
high level of cooperation at equilibrium. In these barcharts, it appears that
strategy 18 is always dominating at equilibrium. Other experiments show that,
each time that cooperation emerges, 18 eventually dominates. Referring to table
1, we may explicit the behaviour of 18 in the following way : always cooperate
until the first defection of the opponent, and then, always defect until the end of
the game. Thus, it is an ALLC that turns to ALLD at the first defection of the
opponent. So it possesses as TFT the properties of benevolence and susceptibility
(cf. section 2), but unlike TFT, it has no indulgence at all. For this reason, and
following J. Maynard-Smith’s inspiration, we call it “the Retaliator” (RET).

To understand the role of RET in the emergence of cooperation, we must look
at the evolution of the population from ¢ = 0 to the equilibrium. To present our
results, we focus on four strategies that play a primordial role in the phenomenon.
They are :

— Always Defect (ALLD) : numbers 1, 2, 3 and 4 ;

— Always Cooperate (ALLC) : numbers 20, 24, 28 and 32 ;
— Tit for Tat (TFT) : number 22 ;

the Retaliator (RET) : number 18.

Figures 3 and 4 represents the evolution of the proportion of these strategies, and
of the average score over the population, starting from a uniformly distributed
distribution. In both case, and also in all the other experiments that we laid, the
scenario leading to cooperation is the same.

At time zero, when the population is uniformly distributed, the malevolent
strategies as ALLD realise the best score. They are so the first to grow, at the
expense of dumb benevolents as ALLC that quickly disappears. In the uniformly
distributed initial population, the susceptible benevolents as RET and TFT do
better than ALLC because they avoid being exploited by malevolents, but worse
than ALLD because they do not exploit non-susceptible benevolents. So, there
quickly happens a situation very different from the initial one, where defection
dominates, the population being mainly composed with ALLD, and a little of
RET and TFT.



When opposed to itself ALLD realises the poor score of permanent mutual
defection, i.e. L P. When opposed to RET and TFT, it gains a very little more
because it exploits the opponent at the first iteration, its score is then T +
(L — 1) P. During this confrontation, the benevolent RET or TFT realises the
lesser, but close, score S+ (L —1) P. It is when two benevolent are opposed that
a significant difference appears. Two benevolent realises the score L R, that is
the best over the population. We verify that this advantage is enough to have
benevolent recover the delay that they gain in front of malevolents. So, this is
now the susceptible benevolents that grow, and especially the unforgiving RET.

Because they have destroyed their spring of reward constituted by the ALLC
population, the malevolents now decrease at great speed. RET continues to grow
and achieves a very wide majority of the population, establishing cooperation.
A population almost entirely composed with RET is a very stable equilibrium
of the system. Other benevolents strategies may sometimes cohabit. Because of
the behaviour of RET, everything seems to them as if they were in an ALLC
population. From the point of view of malevolents, the population is mainly
composed with individual behaving almost as ALLD. So, they realise the poor
score of mutual defection and may not survive. RET is still lightly the best,
because he avoids the total rout sustained by ALLC when they are opposed to
the rare malevolents.

By this mechanism, the combination of benevolence and susceptibility (cf.
section 2) of RET guarantees the stability of cooperation. RET and TFT are
the only two strategies that are at the same time benevolent and succeptible 8 .
Finer studies are needed to understand why TFT does not play a similar role,
but it is a fact that simulations always show an advantage in RET intransigence
9 . Some experiments were laid by preventing the creation of RET individuals,
reducing so the search space to the other 31 strategies. We saw then that TFT
takes the place of RET, although it takes more time to have cooperation emerge.
Moreover cooperation does not emerges, if we suppress RET and TFT from
the search space. This confirm the primordial importance of benevolent and
susceptible strategies in this phenomenon.

All the results presented above are obtained with proportional selection or
trivial topology of mutation. In the special case where elitist selection is as-
sociated with structured topology, the scenario is almost the same, excepted
that instead of an equilibrium, it is a cyclic oscillation between TFT, RET and
sometimes other benevolents, that is the attractor of the dynamic.

For the sake of completeness, we conclude this section with the description
of the influence of all the parameters (listed in section 5). It is striking to see
that most of them have only a weak influence on the behaviour of the system.

8 benevolence traduces by the schemata (0 — C) and (R ~ C), what leaves 8 benev-
olent strategies (even numbers between 18 and 32). Susceptibility implies (S — D)
and (P — D) and so, only two strategies may be benevolent and susceptible. TFT’s
indulgence is the schema (T +— C) replaced by (T +— D) in RET.

? a possible explanation is the better score realised by RET in front of strategy 16
that always cooperate excepted at the first iteration.



IPD parameters : We tried two sets of value for (T, R, P, S) that are (3,2, 1,0)
and the more classical (5,3,1,0), and a very wide variety of values for L
(including odd, even and prime numbers), without a significant modification
of the observations. However it is possible to change the behaviour of the
system with extreme values for these parameters. The combination

S«P, P~R, R<KT
and a short length L (e.g. (T, R, P,S) = (41,21,20,0) and L = 11), is unfair

with susceptible benevolents and stop the scenario at its first stage, when
malevolence dominates (cf.previous discussion about the rise of RET and
the fall of ALLC).

Population size S : Until now, we have only described the theoretical be-
haviour of the model with infinite population. As we explained in section
3, it is obtained by representing the population under the form of a set of
real numbers {¢;} € S3a. Of course, the observed behaviour of the system
with finite population tends to it when the population size grows. The size
needed to have convergence varies with the model used, GA or ES. With
elitist selection, a population of 8 individuals, i.e. 25% of the search space,
is enough to have the system evolve accordingly to its theoretical behaviour.
That is a quite good result when compared to the proportional selection per-
formances. As a matter of fact, a conformable behaviour of the GA model
is not obtained until a population size by 96 individuals, i.e. 300% of the
search space. We may understand that the proportional selection, because
it is somehow more subtle than the rough Max operator of elitist selection,
needs bigger populations, but the observed difference was unexpected and
strongly confirms the quote from Back and Schwefel (1993) in section 3. How-
ever, this very low observed performance of the GA model may be explained
by the absence of any recombinative operator as crossover, and thus of a
real schema processing that is supposed to be the heart of GA. As we argue
in section 7, we believe that the use of crossover may reduce the population
size needed, but that it would not change the qualitative behaviour of the
system.

Topology of mutation : The results presented in the graphics were all ob-
tained with trivial topology of mutation, i.e. when every strategy may be
created from every strategy by mutation. As we explained, the use of struc-
tured topology with elitist selection modify the behaviour of the model in the
fact that the attractor is not an equilibrium anymore, but it becomes a cycle.
With proportional selection, the use of structured topology instead of trivial
topology has almost no influence, it just modifies a little the distribution at
equilibrium.

Selection operator : The difference between the two alternatives for selection
appears clearly on the graphics. The GA’proportional selection is a smooth
operator that induces continuity in the behaviour of the model. On the con-
trary, the ES’elitist selection, because it uses the max operator, has a brutal
behaviour leading to discontinuity and non derivability of observable statis-
tics. It is also to be noted that elitist selection realises exact optimisation for



a large variety of parameters, but when it does not succeed, it falls an the
opposite extreme and realises very low performances.

Temperature ¢ : As explained in the previous discussion, the temperature is
a major parameter that determines all the behaviour of the system.

Initial population : Excepted for very special case, we did not see any influ-
ence of the initial distribution of strategies in the population. The attractor
of the dynamic, equilibrium or cycle, seems always to be the only existing
one.

7 Conclusion

We are now interested in the range of our results. We would like to say that :

If the temperature of the genetic melting is not too high and the popu-
lation size not too low, cooperation naturally emerges under the action
of an evolutionary dynamic. Benevolent but susceptible individuals play
a major role in this phenomenon and they ensure the stability of coop-

eration ;

and so, modify slightly Axelrod’s thesis by giving no advantage to indulgence.

The first objection that may be raised is that our system does not represent
the generality of evolutionary dynamics, in particular it does not use any recom-
binative operator as GA’crossover. It seems to us that this critic is well founded
with regard to the conclusion that we derived about the algorithm behaviour in
general. In particular the observed requirement for a large population size in the
GA model (i.e. with proportional selection), may be explained by the absence of
crossover and so, of a real schema processing that is supposed to be the heart of
a GA. However, we claim that, with regard to the problem of the emergence of
cooperation, the use of other genetic operators would not have change the be-
haviour of the system in a significant way. To support this conjecture, we argue
that our system exhibits a surprising robustness, its behaviour not being altered
by a change of the selection operator or of the mutation operator. So, we may
expect the observed scenario of the emergence of cooperation to be quite general,
and valid for every evolutionary dynamics. We are now improving our software
by introducing a crossover. We are also putting in place a real implementation
of hypothesis NS’ (see the end of section 4), that now applies also with finite
populations and so replaces hypothesis NS.

The other restriction to the generality of our results is that all our conclusions
were derived by restricting ourselves to the small set of strategies that satisfy
hypothesis M. Although IPD is surely a reliable model for a lot of field of study,
its restriction to 32 strategies is only a small game of dubious interest. However,
as we explained in section 3, our motivations were to check the validity of the
Axelrod ’s results with large populations, and it is not more arbitrary to restrict
the search space with hypothesis M; than with hypothesis M3. We think that
the possibility to cover all the search space, and thus be able to see when the



algorithm converge and when it does not, constitute the main interest of our
work, that reinforce Axelrod’s one.
It is also striking to see how the observed behaviour of the model, i.e. :

1. growth of malevolents and fall of dumb benevolents,
2. raise of susceptible benevolents and fall of malevolents,
3. establishing of cooperation,

is close to the behaviour of the “human” set of strategies of Axelrod’s tourna-
ments (Axelrod 1984). It is a pity that no result is provided in (Axelrod 1987),
we may wander about the scenario of the raise of cooperation in Axelrod’s GA.
It seems that the phenomenon that we observe has a certain level of generality,
at least when the symmetry of the search space is preserved, as it is the case
with M; and Ms.

Because of this strong property, IPD may surely be called an “evolution-easy”
game. It is tempting to conclude that evolution is a very powerful dynamic that
may solve strong cooperation problems. But, if we keep in mind the definition
of strong cooperation problems sketched in section 1, i.e. games where Nash
equilibriums are strictly dominated by diametrically opposed situations, we are
not sure that IPD is a strong cooperation problem. On the contrary, a study that
we laid shows us that the situation is not so simple in our 32-alternatives version
of IPD. Thus we may wander about the behaviour of evolving populations in
strong cooperation problems bigger than the 2-decisions PD. In all cases, it is
nice to see that by iterating it, PD becomes an evolution-easy game.

Our theoretical study of IPD and the results of simulations with strong coop-
eration problems will be the subject of a latter publication. We believe that it is
highly improbable that evolution will lead to optimality in a 50-decisions strong
cooperation game. If it turns out to be true, no general conclusion about the
power of evolutionary dynamics could be derived. Then our future works would
be to apply our approach of evolution with large populations, to other not too
big paradigmatic games, and find again the nice point of view on evolution that
we had with IPD.
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Table 1. The 32 strategies for [PD that satify M;.

1: ALLD 2 : ALLD 3:ALLD 4: ALLD
O —D O —D O —D O +—D
P—D P—D P—D P—D
T—D T— D T— D Tw— D
S—D S—D S— C S— C
R— D R— C R— D R— C

5: 6 : 7: 8 :

O —D O —D O —D O +—D
P—D P—D P—D P—D
Tw— C Tw— C Tw— C T C
S—D S—D S— C S— C
R— D R— C R— D R— C
9: 10 : 11 : 12 :
O —D 0 —D O —D O +—D
P—C P— C P— C P~ C
T— D T— D T— D Tw— D
S—D S—D S— C S— C
R— D R— C R— D R— C
13 : 14 : 15 : 16 :
O —D O —D O —D O +—D
P—C P— C P~ C P~ C
Tw— C Tw— C Tw— C T C
S—D S—D S— C S— C
R— D R— C R— D R— C

17 : 18 : RET 19 : 20 : ALLC
0 — C 0 — C 0 — C 0 — C
P—D P—D P—D P—D
T— D T— D T— D Tw— D
S—D S—D S— C S— C
R— D R— C R— D R— C

21 : 22 : TFT 23 : 24 : ALLC
0 — C 0 — C 0 — C 0 — C
P—D P—D P—D P—D
T— C Tw— C Tw— C T C
S—D S—D S— C S— C
R— D R— C R— D R— C

25 ¢ 26 : 27 . 28 : ALLC
0 — C 0 — C 0 — C 0 — C
P~ C P— C P— C P— C
T—D T—D T— D Tw— D
S—D S—D S— C S— C
R— D R— C R— D R— C

29 : 30 : 31: 32 : ALLC
0 — C 0 — C 0 — C 0 — C
P~ C P— C P— C P— C
T— C Tw— C Tw— C T C
S—D S—D S— C S— C
R— D R— C R— D R— C




Fig. 1. Quality of the equilibrium point as a function of the temperature 6,
note that, in the case of elitist selection, the fall from 100% of cooperation to 100%
of defection is at § ~ 2.06, and the stage at 100% of defection continues over § = 100
(experience laid with (T, R, P, S) = (3,2,1,0), L = 30, infinite population and trivial
topology).
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Fig.2. Population at equilibrium, with proportional selection § = 10% and
the average score at equilibrium is 53.89, with elitist selection § = 1 and the
average score at equilibrium is 60 (100% of cooperation) (experience laid with
(T,R,P,S) = (3,2,1,0), L = 30, infinite population and trivial topology).
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Fig. 3. Evolution of the population through time, starting from a uniformly
distributed population and using proportional selection, the average score at
equilibrium is 58.76 (experience laid with (7, R, P,S) = (3,2,1,0), L = 30, infinite
population, # = 2.5% and trivial topology).
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Fig. 4. Evolution of the population through time, starting from a uniformly
distributed population and using elitist selection, the average score at equilib-
rium is 60 (100% of cooperation) (experience laid with (7, R, P, S) = (3,2, 1,0), L = 30,
infinite population, § = 0.75% and trivial topology).
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